If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-14X=77
We move all terms to the left:
X^2-14X-(77)=0
a = 1; b = -14; c = -77;
Δ = b2-4ac
Δ = -142-4·1·(-77)
Δ = 504
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{504}=\sqrt{36*14}=\sqrt{36}*\sqrt{14}=6\sqrt{14}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-6\sqrt{14}}{2*1}=\frac{14-6\sqrt{14}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+6\sqrt{14}}{2*1}=\frac{14+6\sqrt{14}}{2} $
| -12+-4x=12+-1x | | 11 = m3– -7 | | 4/5=1/2x | | 8u+4u-17=53 | | s+9/4=4 | | 1.05^(2x)=2 | | 2y^2-7y+30=0 | | 15=-x-17 | | 3x/2+1=x+9/2 | | |x+1|=1 | | 4(n–14)=12 | | -6 = n4+ -10 | | 1/2(b-6)=27 | | 1n=3n-8 | | 2(4x^2-7=) | | 2(x+9)+2=29 | | 15+5x5+5/36/x+x1+6x0=65 | | 3(b-6)=21 | | 5(x+1)+2x=1/2(14x+8) | | -52=17+s | | 2=(4x^2-7) | | 4x+1=x+1+10 | | 5-(x-3)=4x-(3x+8) | | 4/9b=168 | | 6/5x=7/6 | | 3(3v-)=3/4(4-24v) | | y/5=24.6 | | 1/2(3y-8)+10-7/2y=16 | | -2p-6=3p+6 | | -4x=44x=11 | | 1+2x/2+4-x/3=7/6 | | 12x^2+9^2=144 |